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Characterization of Nonparametric Classes of Life Distributions
by

Naftali A. Langbergl, Ramén V. Ledﬁ*? and Frank Proschans

ABSTRACT

In this paper we obtain characterizations of large classes of nonparametric
life distributions, such as the increasing (decreasing) failure rate, increasing
(decreasing) failure rate average, new better (worse) than used, etc., classes.
The methods used differ from the usual functional equation methods used for the "

far more common characterizations of parametric families of life distributions.
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Characterization of Nonparametric Classes of Life Distributions

by
Naftali A. Langberg, Ramén V. Ledn, and Frank Proschan

1. Introduction and Summary. Characterizations of particular parametric

families of life distributions are quite common in the literature (see, for
example, Kagen, Linnik, and Rao, 1973, and Patil, Kotz, and Ord, 1975). 1In
this paper, by contrast, we present characterizations of large classes of

nonparametric life distributions, such as the increasing (decreasing) failure

rate, increasing (decreasing) failure rate average, new better (worse) than
used, etc., classes. (See Section 2 for exact definitions.) Such character-
izations are far less common and generally require quite different mathematical
and statistical techniques.

Our characterizations are based on order statistics, weighted spacings
between order statistics, and total time on test transforms; in most cases
inequalities among limiting expected values determine the characterizations.
Related results concerning total time on test transforms had been obtained
earlier by Barlow and colleagues (exact references are given for each of these
results as they appear in the text below), but not necessarily under the
weakest assumptions on the distributions. Since in characterization, emphasis
is placed on obtaining results under the weakest assumptions on the distributions
being characterized, we have found it useful to prove stronger versions of a
number of these known results--for example, a characterization which requires
that a distribution be differentiable is not as appealing as one that requires

that it only be continuous.
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In Section 2, we present preliminaries consisting of definitions and
notation. In Section 3, we present properties of the total time on test
transform and a characterization of the IFR(DFR) class of life distributions
in terms of the concavity (convexity) of the total time on test transform.
in Section 4, we present characterizations of the IFR(DFR) classes based on the
monotonicity of the expected values of the weighted spacings between successive
order statistics; the number of sample sizes required is infinite. By using
the fact that the exponential distribution is both IFR and DFR, we are able
to obtain a strengthened characterization of the exponential distribution, as
compared with the earlier Saleh (1976) characterization. We also obtain
additional characterizations of the IFR(DFR) distribution requiring only a
single sample size; of course, we must compensate by making the stronger
assumption of stochastic monotdnicity rather than expected value monotonicity.
In Section 5, we present characterizations of distributions such as IFRA, NBU,
HBUT, and .their duals, which are similar in spirit to those in Section 4 for
the iFR(UFR) ciasses.

One final remark should be made. Chandra and Singpurwalla (1978) have
rointed out the close raltionship between the total time on test transform
and the Lorenz curve used by economotrists. Thus, some of our results of
Section 3 concerning total time on test transforms can be used to obtain
analogous results for the Lorenz curve, and may thus be of interest and value

in fields other than reliability.




2. Preliminaries. Let F be a life distribution, that is F(0-) = 0. We

use the following notation and conventions: P'l(t) = inf{x: F(x) > t},
t e [0, 1); F'l(l) = sup{x: F(x) <1}; F=1-F; R=-2nF. We use
"increasing" in place of "nondecreasing' and ''decreasing' in place of
"nondecreasing'.

Next we define the classes of life distributions to be considered in the
sequel.

Definition 2.1. (a) F is increasing failure rate (IFR) if

F(t + x)/F(t) is decreasing in t (-» < t < F'l(l)) for each x > 0.

(b) F is (shifted) decreasing failure rate (SDFR) if F(t + x)/F(t) is

increasing in t(F'l(O) S t < w) for each x > 0.

(¢) F is increasing failure rate average (IFRA) if %R(t) is increasing
int (0<t< F'l(l)).

(d) F is decreasing failure rate average (DFRA) if %R(t) is decreasing

int > 0.

(e) F is new better than used (NBU) if F(x + y) < F(x) F(y) for

x>0, y>0.

(f) F is new worse than used (NWU) if F(x + y) = F(x) F(y) for x > 0,

y > 0.

(g) F is new better than used in expectation (NBUE) if (i) f xdF (X) < =;

(i) [ F(x)dx 2 (] xdF (x))F(t) for t > O.
(h) F is new worse than used in expectation (NWUE) if [ F(x)dx <
([ xdF(x))F(t) for t > 0.

The chain of implications IFR => IFRA =» NBU => NBUE is readily established
(see Marshall and Proschan, 1972).




Let xl, x2, Pt Xn be a random sample of size n from F. The k-th

weighted spacing, wk:n’ between order statistics xk-l:n and xk:n is defined

by wk:n =(n-k+1) - (xk:n - xk-l:n) for k =1, 2, ..., n, where x0:“ = 0.
The total time on test up to the k-th order statistic, T(xk°n)’ is defined by
K .

T(X,.,) = i§1 Wi.p for k=1, 2, ..., n, and T(X), ) = 0. If we assume that n
items are placed on test at time 0 and that successive failures are observed
at times )(1:n < x2:n S e S xn:n, then wk:n represents the total test time

observed between xk—l'n and xk'n' and T(Xk_n) represents the total test time

observed between 0 and xk'n (see Barlow and Proschan, 1975, p. 61).




t

3. Properties of the Total Time on Test and Its Transform. Let

-1
H;I(t) 5 IF (*)F(u)du for 0 s t < 1. Barlow and Campo (1975) call H;l the
0

total time on test transform. In this section we develop some of the

properties of H;l.
Before starting the first theorem we need two definitions.

Definition 3.1. A point x is a point of increase of F if

F(x - h) < F(x) < F(x + h) for every h > 0.

of ordered pairs of natural
r=1

Definition 3.2. A sequence {(kr, n )}
numbers is a t-sequence (0 st s 1) if (i) 1 < kr Sn o <n, + 1 for all r,
and (ii) kr/nr >tasr + o,

Theorem 3.3. Let F'l(t) be a point of increase of F, and let (k, n) range

over a t-sequence. Then as n + =,
Lo 3+ ) aus
Lrex, ) > i P

Proof. Let F denote the empirical distribution function of F. Then
T(xk'n) =n HF1P£TT_J [ k o (u)du (see Barlow and Campo, 1975). Also
% n

for (k, n) ranging over a t-sequence, xk'n + F~ (t) a.s. as n + » since F'l(t)

is a point of increase of F (see Rao, 1973, p. 423). The desired result

follows by the Glivenko-Cantelli Theorem (Chung, 1974, p. 123). ||
Next we note that if ax is finite, then Exk, . Bwk:ﬁ’ and ET(xk:n)

are also finite, since 0 < X, . < T(X.. ) < [ X; =n X_. This observation
n iS5y n

1 ®
can be used to show that whenever rxl is finite, {E;T(xkr:nr)}rtl is

uniformly integrable for every t-sequence {(kr, "r)}:-l' Since a uniformly
convergent sequence which converges almost surely converges in mean (see

Breiman, 1973, p. 91), we can state the following result.




Theorem 3.4. Let t, k, and n be as in Theorem 3.3 and let EX1 be finite.
e 1 -1 : 1 -1
Then EI;T(Xk:n) - Hg (t)|] + 0 as n > =, In particular, SET(X, . ) + HE (t) as
n -+ o,

We remark that neither Theorem 3.3 nor Theorem 3.4 is true if t is

not a point of increase of F. In this case a counterexample to Theorem 3.3

and to Theorem 3.4 can easily be constructed using the facts that

lim X = Fl(t-) and Tim X = F7l(t-) and that £ l(e-) = Flge).

[nt]:n [ntl:n
N> n->e -l
(T*] denotes th= greatest integer function). To show that lim Xf N % F “(t)
’ s ntlin
b= =g 5 S t _! = —
and i1m x[nt]:n F “(t), use the fact that Prx{nt}:n > x1 = P(B(n, F(x)) >

n - [nt} + 1], where B(n, F(x)) denotes a binomial random variable (see
Mood, TrarLill, and Boes, 1974, p. 252), and the law of the iterated logarithm
{see Breiman, 1968, p. 291).

et +f(xo) denote the right-hand derivative of f at the point x We

0
t:ve the fellowing lenma.
Lomue 5.5. Let x be a point of increase and of continuity of F. Then
PHg,l(F(x)) exists and is nonzero if and only if +P.(x] exists and is nonzero.
in either case, “Hi'(F(x)) *R(x) = 1.
: Proof. Note that in a neighborhood of x, P"1 behaves like the usual
inverse function of F. The result follows using standard differentiation results. ll

The next proposition is easily verified.

Proposition 3.6. The life distribution F is (i) IFR if and only if

cither F is degenerate or R(x) is convex on (F'I(O), F'l(l)) and F(F'l(O)) = 0;
{ii) SDFR if and only if R(x) is concave on (F'I(O), ®),
The following simple properties of Hgl will be needed in the proof of

our next theorem.




~
(&)

.1) n;l(O) = Fl(0).

ta

Xl.

-1 -1
(3.2) Hg (t +) = H (1)

:Xl.

-1 -1
(3.3) HF a-) = HF (1)

(3.4) H;l is increasing on ([0, 171.

(3.5) For y € [0, »), the set {s: HF'I(s) = y} = [a, b), where
.<a<bs1, if and only if P(X = F'X(a)) = b - a. ;

(3.6) For 0 sac<l, H;1(a <) = H;l(a) if and only if F(F'l(a -)) =
F(F'l{a)). In particular H;l is continuous on [a, b) if and only if every
coint in (F'l(a), F'l(b -)) is a point of increase of F.

Theorem 3.7. (Barlow and Campo, 1975). The life distribution F is
+“X(SDFR) if and only if “;1 is concave (convex) on [0, 1].

Proof. Let H;I be concave on [0, 1]. Since “;1

rpave exists a real number A in [0, 1] such that HF1 is strictly increasing

is increasing on [0, 17,

we T0 Al ard constant on [A, 1]. If A =0, HEI is constant on [0, 7 and
‘onsequently, ¥ is the IFR distribution degenerate at F_l(O). Next suppose
that A > 0. It foilows that H;I(t) > 0 for all t € (0, A). Equivalently,
*11(F(x)) > 0 for x in (F-1(0), F1(1)) since F-1(A-) = F1(1). By (3.5)
ard (3.6), every point of (F'I(O), F'l(l)) is a point of increase and of
~ontinuity of F. Ilence, by Lemma 3.5, the concavity of H;1 implies that ’R(x)
exists and is increasing on (F’I(O), F'l(l)), that is, R is convex on
(F"*(0), F1(1)). since by (3.6) F(F"1(0)) = 0, then F is IFR by Proposition 3.6.
Next let F be IFR. By Proposition 3.6 either F is degenerate in which |

case H;l is constant and thus concave or R(x) is convex on S = (F’l(O), F'l(l)) f

and R(F'I(O)) = 0. Assuming the latter, let x ¢ S and h > 0. Then




0 < R - REH(0)) <R +h) - R(X)
-1 h &
x - F 7(0)
Consequently *R exists and is positive on S. Now since 'F = F 'R is positive
on §, S contains only points on increase and of continuity of F. Thus by

Lemma 3.5, +H;.lo F is decreasing on S, that is, *0! i decreasing on (0, 1).

F
Hence H;1 is concave on (0, 1). Since an IFR distribution has a finite mean
by (3.2) and (3.3), H;1 is concave on [0, 1].
The counterpart results for the SDFR case can be proved similarly. II
Theorem 3.7 is due to Barlow and Campo, 1975 (see also Barlow, 1977),
but our proof is new. Our proof avoids some technical difficulties which

-<ica in the limiting argument used in the Barlow and Campo proof of the

“if" part of Theorem 3.7.




4, Characterizations of the IFR(SLFR) Class. Barlow and Proschan (1966)

nave shown that if F is IFR(SPCFR), then for all x > O, p(wk:n > u) is
decreasing (increasing) in k (k = 2, 3, ..., n) for all n 22, If F has a
finite mean, then E wk:n < » for all ch "ces of k and n and consequently
E wk:n is decreasing (increasing) ir k{(k = 2, 3, ..., n) for alln 22, In
this section we prove that a siightly weaker version of the last condition
is sufficient for F to be IFR(SLUIR). Then we use this result to obtain a
characterizaticn of the shifted crpcnential obtained by Saleh (see Kotz,
1974), who required stronger rcyularity conditions on F than we require. Two
other characterizations of the IFR(SDFR) are given.

The main result of this section follows.

Theorem 4.1. Let F te a continuous life distribution with finite mean.

.lien F is IFR(SDFR) if and only if E W is decreasing (increasing) in

kin

kKik = 2, ..., n) for infinitely many n.
The ‘only if'" part has already been shown. To prove the "if" part, we

uced the following lemma. This lemma shows that every point in the support

~f F is 2 noint of increase of F. Thus Theorem 3.4 can be used at every point

of ths support of F to show that H;I is concave (convex), that is, F is

IFR(SDFR) by Theorem 3.7. We remark that this proof avoids all assumptions

on F other than continuity. [If we are willing to assume the existence of

a positive continuous density f everywhere in the support of F, we can

>btain a more direct proof of the "if'" part of Theorem 4.1 by using the fact

that in this case W converges in distribution to an exponential

[ntl:n
distribution with failure rate r(F°1(t)), where r(t) £(t) is the failure

F(t)

m

rate of F (see Pyke, 1965).]




10

Lemma 4.2. Let F be a continuous life distribution with finite mean.
Let E wk:n be decreasing (increasing) in k (k = 2, ,.., n) for infinitely
many n. Then the support of F is the interval [F'I(O), F'l(l)].

Proof. The support of a continuous distribution is a closed set without

isolated points (see Chung, 1974, p. 10). It follows that if S, the support

of F, is not an interval we can find a, b, and ¢ such that (a - €, al < S,

(a, ) € v S ={x: x ¢S}, and [b, b + €) ¢ S. Let t = F(a) = F(b),
t1 = E—:—Eéi—:—sl-and t2 = (t + F(b + €))/2. Also let h > 0 be small enough

so that [tl - h, {1 + h] < (F(a - €), t) and ft, - h, t, + hi c (t, F(b + €)).
Since T(xk:n) = i=1wi:n’ we obtain for each one of the infinitely many n that
T tne,-my1otn-2nd)my = BT rnce - 3:n)
i 2 ETX (rn (e-n) Jeln-20]) en ~ ETXpne-n) 3:n)
2 BT tnce,-ny etn-2n2yin ™ FT ¥ pnge,ony1im),
The points at which F equals t1 =Sh, t1 &« oot =R, t ® h t2 - h, and t2 + h

are all in the interior of S and are consequently points of increase of F,

Applying Theorem 3.4 to the chain of inequalities (4.1), we conclude that

H;.l(t1 +h) - n;lctl - h)

(4.2) 2($) Ho'(t + h) - Hol(e - h)
2(<) K2 e, + ) - Hlee, - h)
Pl ¥ T2 ¥ "2 g
Since '1(-) = F(u)du is continuous at t_ and t , letting h + 0 in (4.2),
o 1 2
we conclude that lim H;l(t + h) - H;l(t - h) = 0. But since Hél is increasing,
h+0




this implies that HF1 is continuous at t, or equivalently, that F-l is continuous

at t. This contradicts the fact that F is constant on (a, b). It follows
that S must be an interval. The desired result follows. ||

We now complete the proof of Theorem 4.1.

Proof of Sufficiency. Let tl, t2' and h be such that 0 s t, < t2 <t,+hcsl,

1 2

Using the argument in the proof of Lemma 3.8 yielding (4.2), we obtain:
4.3) ey e m - H e 20 e, ¢ m) - B ()
; Hp~ (%, Hp iy e (t, He " (t)).

Since (4.3) is true for all tl, tz, and h satisfying the constraints above,

H;l must be concave (convex) on [0, 1]. By Theorem 3.7, this implies that F

is IFR(DFR). ||

g e e A L L i

It is clear from the proof of Theorem 4.1 that the following characterization
of the IFR(SDFR) class is also true.
Theorem 4.3. Let F be a continuous life distribution with finite mean.
Then F is IFR(SDFR) if and only if for infinitely many n > N and some &(1 s ¢ < N)
k+2

E [ W 3
j=k 170 |

is decreasing (increasing) in k(1 s k < n - 2).
Note that F is both IFR and SDFR if and only if F is shifted exponential,
that is,

N b « g - Floyy  x2Fl)
F(x) = 11 x < L0y,

for some positive A. lience as a corollary of Theorem 4.1 we obtain thé

following:




12

Corollary 4.4. Let F be a continuous life distribution with finite mean.

Then F is shifted exponential with mean p if and only if for infinitely many
n22,E wk:n =yufork=2,3, ..., n.

A similar characterization was obtained by Saleh (1976) but with the
additional (unnecessary) condition that inf{x: F(x) = t} is differentiable
on (0, 1).

Now we give another characterization of the IFR(SDFR) class which requires

conditions for only one sample size. Since

(4.4) PO outin = Xpin ” WXpen = 0 = Flx + w)/FE)™™

(see David, 1970, p. 18), the following result holds:

Theorem 4.5. The distribution F is IFR(SDFR) if and only if for some
fixednandm (2 <m+1<n), andallu20, P(X,,,. -X . > u|Xm:n = x) is
decreasing (increasing) in x(-= < x < F'l(l)) E(F'I(O) S x < w)],

Actually if F is IFR(SDFR), then P(X ... - X . > ulxm:“ = x) is
decreasing (increasing) in x for all n and m, where 2 <m + 1 < n. However
since the emphasis of this paper is on characterizations, we omit this
generalization from the statement of Theorem 4.5. A similar remark can be
made about other theorems in this paper (see Theorem 5.1 for example).

Recall that a random variable X is stochastically increasing (decreasing)
in Y, another random variable, if for all x, P(X > x|Y = y) is increasing
(decreasing) in y. Hence Theorem 4.5 can be restated using this language.
Similar remarks apply to other theorems in this paper (see for example

Theorems 5.1 and 5.3).




13

5. Characterizations of Classes of Life Distributions Other Than the

IFR(SDFR). In this section we characterize classes of life distributions other
than the IFR(SDFR). The following two characterizations are similar in
suirit to the characterization of the IFR(SDFR) class given in Theorem 4.5,
By (4.4) we immediately obtain:

Theorem 5.1. The life distribution F is NBU(NWU) if and only if

P(X > u) 2(5) P(X Y R u|Xm = x) for some fixed n and m

1:n-m m+1l:n m:n :n

(1 <m<n), and all u 2 0 and x = 0.

Since E(Xn - X

£ n-l:nlxn-l:n s X) = (i F(u)du)/F(x), we also have:

Theorem 5.2. Let F be a life distribution with finite mean. Then F is

NBUE (NWUE) if and only if B(xn - X

n n-l:nlxn-l:n = x) £(2) EX; for some fixed

n22, and all 0 € x < F'l(l).
Next we give a characterization of the IFRA(DFRA) class:
Theorzm 5.3. Let F be a life distribution such that F(0) = 0. Then F
is IFRA if and only if for all x > 0, P(wlzn > x) is increasing in n 2 N,
where N is arbitrary.
Prccf. We have for 0 < x < =, P(wlzn > Xx) = ?n(x/n).
It follows that P(wl:n > X) is increasing in n 2 N for all x> 0

if and only if

(5.1) F'(x/n) < F'(x/m) for all N <n <mand all 0 € x < =,
Recall that F is IFRA if and only if

1/t t

¥’ %2 1/t -1
(5.2) F (t,) s F (t)) for all 0 < t, < t, < F (1).
We show that (5.1) implies (5.2). Let 0 < tl <ty both be rational,
t
and let N < n <m be nf*“ural numbers such that ?3 = Eu Let a = (mltl)°1.
1

e ———y
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Then na = 1/c2 and ma = l/tl, so it is easily seen that (5.1) implies that
_Mr i s - "y "
F 2(xa.tz) < F 1(xatl). Letting x = o ~, (5.2) follows since F is right

continuous and the rationals are dense.

To show (5.2) implies (5.1), let x, n, and m be such that x 2 0 and
N<n<m If x=0, then Fn(x/n) = ?m(x/m) = 1 since F(0) = 0 so (5.1)
follows. If x/a 2 F“l(l) then F(x/i) = 1 and (5.1) also follows. If 0 < x and
% < F'l(l), then set t1 = x/m and iy = x/n in (5.2) to obtain (5.1). ll

The following dual theorem hes a similar proof which we omit.

Theorem 5.4. Let F be a2 life distribution. Then F is DFRA if and only
if for all x > 0, P(wlzn > x) is decreasing in n 2 N, where N is arbitrary.

To prove our naxt result we need a the-rem of Barlow and Proschan (1966).

Let X{ , have distribution F(G). We assume that F(0) = 0 = G(0), and
~hat F and G are continuous. e also assume that the support of F is an
interval, possibly infinite, and that G is strictly increasing on itg support.

Ga F(x)
Theorem 5.5. (Borlow and Proschan, 1956, Theorem 3.6). Let <

e increasing In x in the support of F. Then Exi'n/Eyi'n is decreasing in i

(L = %, 2y coey M)s

Theorem 5.6. Let F be a continuous life distribution with finite mean.
sssume that the suppert of F is an ianterval and that F(0) = 0. Then F is

i
IFRA(DFRA) if and orly if EX;.ﬁ/( E 1/(n - k + 1)) is decreasing (increasing)

Yl

ini(i=1, 2, ..., n) for infinitely many n.

2roof. Let C i Theorem 5.5 be the exponential distribution with mean 1.
i
Then EY, = ] 1 (see Barlow and Proschan, 1975, p. 60). Thus
A k=1 n - k + 1]

necessity follows from Theorem 5.5 (as does the dual result for the opposite

direction of monotonicity) if we note that G'1(x) = -¢n(1l - x).
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To prove sufficiency, first observe that every point in the support of
F(G) is a point of increase of F(G). Hence Y[nt]'n -+ G'l(t) = -¢n(1 - t) and
}

-1 — 3
x[nt];n +F "(t) a.s. as n + =. We show {X ne1 1S uniformly integrable.

We have

[nt]:n

PXrnegin > ¥ = P(B(n, F(x)) > n - [nt] + 1),

where B(n, ?Ix)) denotes a binomial random variable with parameters n and

F(x). Thus

n —
(5.3) P[x[ntJ:n & n - [nt] + 1 F(x)

since P(Z > t) < E% for any nonnegative random variable Z. Hence

EX IC Al

ntl:n x[nt]:n *

= ‘{ P[x[m]:n > xJdx + AP[X. o9.n 2 A

[by integration by parts]

< n_‘-"t‘:TTTT (‘{ F(x)dx + A F(A))
[by (5.3)]

1 ]
f —————— (E x1 I[x1 2 Al.

1 - [nt] e !
n n

It follows that X (and similarly Y is a uniformly integrable sequence

[nt]l:n
+ F"l¢t) and B, * 6 lt) as n + = Thus

[(ntl:n

in n. Consequently, Ex[nt]:n

by hypothesis, F'l(t)/(-zn(l - t)) is decreasing (increasing) int (0 < t < 1).

-1
Equivalently, = (E(lll. = f. is decreasing (increasing) in x
-2n(l - F(x)) -anF(x)

(0 <x < F'l(l)). Sufficiency follows. ||
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Now we characterize the NBU (NWU) class. First we prove a lemma.

Lemma 5.7. Let F be a continuous life distribution. Then F is NBU (NWU)
if and only if F'l(t +5s - ts) <(2) F'l(t) + F'l(s) for every t and s such that
F'l(t) and F'l(s) are points of increase of F.

Proof. Let Fl(t +s - ts) s F'2(t) + F}(s) for all t and s such that
F'l(t) and F'l(s) are points of increase of F. To show that F is NBU, it is
enough to show that F(x + y) < F(x) F(y) for all x and yeD={z > 0:

F(z - €) < F(z) for all € > 0}. But since F is continuous for each x and y ¢ D,
we can find sequences {xn} and {yn} of points of increase of F such that x tx
and ¥, +yasn->w» Thus it is enough to show F(x + y) < F(x) F(y) for all x
and y which are points of increase of F. Let x and y be two such points and
let t = F(x) and s = F(y). Thent +s - ts < F(F'I(t +s - ts)) < F(F'l(t) +
F'1(s)) by hypothesis. Hence 1 - t - s + ts 2 F(F 1(t) + F l(s)); that is,
F(x) F(y) = F(x + y), as desired.

Necessity follows by reversing the steps of the last three sentences above. ||

Theorem 5.8. Let F be a continuous life distribution with finite mean.
Then F is NBU (NWU) if and only if for every t and s in (0, 1) such that F'l(t)

and F'l(s) are points of increase of F, we have

E(x[nt]+[n(1-t)s]:n i xfnt]:nlx[nt]:n)

a.s.

e Ex[n(l-t)s]:n-[nt]

for infinitely many n.
Proof. We first prcve sufficiency. Let t and s be such that F'l(t) and

F'l(s) are points of increase of F, let n always range over the infinite




- —

sequence of the hypothesis. By the Markov property of order statistics, we

have

]

(5.4) Pal®) = P etna-t)sTin = Xnes 2 XX e y:n)

a.s. ' F(x + X y
= P(B(n - [nt], — [nt):n ) >n - [nt] - [n(1 - t)s] + 1),
F(x[nt]:n)

where B(n, p) is a binomial random variable with parameters n and P.

But since F™'(t) is a point of increase of F, then by the SLLN and the

fact that x[nt]'n > F'l(t) a.s. as n - =, we have

Fox + x[nt]:n v Flx + F-I(t))

= 1-1¢
F(x[nt]:n

1
(5.5) m B(n - [nt],

a.s. as n +» =, Hence by (5.4) and (5.5),
p(x[m:]*[n(l - t)sl:n ~ x[nt]:n v x|x[ntJ:n)

1 ifx<Flt+s-es)-rlg
(5.6) >

0 if x > F’l(t +5Ss - ts) - F'l(t)

a.S. as n + o,
Now (5.4) and the inequality P(Z > t) s EZ (¢ > 0) imply that

s. (n - [nt])F(x + X

1 [ntJ:n)]
n-[nt] -Tn(T-¢t)sT+1 [

a.

P_(x) <
n

I!-(x[m:] tn) J

8-5[ (n_- [nt]) ) F.

[nt]:nJ

(n - [nt] - [n(1 + t)s] F(x

P —
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oo
Since [ F(x)dx < =, Xne1 * F'l(t) a.s. as n + », and F(F'l(t)) > 0, it
0 ' a.s.
follows that for all sufficiently large n, Pn(x) < g(x), where g(x) is

integrable. Thus by the Lebesgue dominated convergence theorem,

E(x[ntﬁl'r[n(l-t)s'_I:n e x[ntJ:n) N g Pn(x)dx

> F'l(t + 5 - ts) - F'l(t) a.s. as n + o,

: -1 ;
Since x[n(l—t)s]:n-[nt} + F "(s) a.s. as n +- », we have by hypothesis

that F'l(t +s -ts) s F'l(t) + F'l(s). Sufficiency follows from Lemma 5.7.

To show necessity, let X(H) denote a random variable with distribution H.
For y 2 0, let 5; = F(x + y)/F(y). Then F is NBU (NWU) if and only if for
all y > 0, X(G ) is stochastically smaller (larger) than X(F), written
X(Gy) §t(§t) X(F). Hence if F is NBU (NWU), then for all y > 0, 0 < t < 1, and

0<s<1,

st st
x(Gy)'l".n(l--t:)s]:n-[m:] 5 )X(F)[n(l-t)s]:n-[nt].

But by the Markov property of order statistics, the conditional random

variable X; 0o ys9in x[nt]:n'x[nt] = y has the same distribution as

the random variable x(Gy)[n(l-t)s] necessity follows. ||

in-{nt]
Observe that by the Markov property of order statistics,

1 n-(nt]
n - (nt] E(kgl XIntdekin - x[nt]:n‘x[nt]m)

a.s. g Flx + X nt]:n)ds

F(x[nt]:n)
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Hence we can use the methods of the proof of Theorem 5.8 to obtain the following
characterization of the NBUE (NWUE) class.

Theorem 5.9. Let F be a continuous life distribution with finite mean.
Then F is NBUE (NWUE) if and only if for every t in (0, 1) such that F-!(t)

is a point of increase, we have

X n-[nt] 1
n - [nt) E(kﬁl x[nt]+k:n 5 Ex[nt]:n'x[nt]:n = E)(1

for infinitely many n.
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